Физическая природа звука

Материал из База Знаний Фирмы Интеграл
Перейти к: навигация, поиск

Звук является спутником человека в течение всей его жизни, но мало кто задумывается, что он собой представляет. С физической точки зрения звук можно определить как колебательные движения частиц в упругой среде, вызванные каким-либо источником, коротко — упругие волны. Скорость звука зависит от свойств среды, в которой он распространяется: в газах скорость звука растет с ростом температуры и давления, в жидкостях при росте температуры наоборот снижается (исключением является вода, в которой скорость звука достигает максимума при 74°С и начинает снижаться только при увеличении данной температуры). Для воздуха такая зависимость выглядит так:

С = 332 + 0,6tc

где tc — температура окружающей среды, °С.

Таблица 1. Скорость звука в газах, при температуре 0 °С и давление 1 атм.

Азот 334 м/с
Кислород 316 м/с
Воздух 332 м/с
Гелий 965 м/с
Водород 1284 м/с
Метан 430 м/с
Аммиак 415 м/с

Таблица 2. Скорость звука в жидкостях при температуре 20 °С.

Вода 1490 м/с
Бензол 1324 м/с
Спирт этиловый 1180 м/с
Ртуть 1453 м/с
Глицерин 1923 м/с

В твердых телах скорость звука определяется модулем упругости вещества и его плотностью, при этом в продольном и поперечном направлении в неограниченных изотропных твердых телах она различается.

Таблица 3. Скорость звука в твердом теле.

Вид твердого тела Скорость продольной волны, м/с Скорость поперечной волны, м/с
Плавленый кварц 5970 3762
Бетон 4200–5300
Плексиглас 2675 1110
Стекло 3760–4800 2380–2560
Тефлон 1340
Полистирол 2350 1120
Сталь 5740 3092
Золото 3220 1200
Мрамор 3810
Алюминий 6400 3130
Полиэтилен 2000
Серебро 3650–3700 1600–1690
Дуб 4100
Сосна 3600

Из таблиц наглядно видно, что скорость звука в газах значительно ниже, чем в твердых телах, именно поэтому в приключенческих фильмах часто можно увидеть, как люди прикладывают ухо к земле, чтобы определить наличие погони за собой, также это явление заметно рядом с железной дорогой, когда звук приходящего поезда, слышится дважды — в первый раз он передается по рельсам, а второй — по воздуху.

Процесс колебательного движения звуковой волны в упругой среде, можно описать на примере колебания частицы воздуха:

— на частицу воздуха, вынужденную сдвинуться со своей начальной позиции, из-за воздействия источника звука, действуют упругие силы воздуха, которые пытаются вернуть ее на свое первоначальное место, но из-за действия сил инерции, возвращаясь, частица не останавливается, а начинает удаляться от начальной позиции в противоположную сторону, где в свою очередь на нее также действуют упругие силы и процесс повторяется.

Koleb.jpg
Рисунок 1. Процесс колебания частицы воздуха


На рисунке (рисунок №2) маленькими точками образно представлены молекулы воздуха (в кубометре воздуха их более миллиона). Давление в области компрессии несколько превышает атмосферное, а в области разрежения, наоборот, — ниже атмосферного. Направление малых стрелочек показывает, что, в среднем, молекулы движутся направо из области высокого давления и налево из области низкого. Любая из представленных молекул сначала проходит определенное расстояние в правую сторону, а затем такое же расстояние в левую, относительно своей первоначальной позиции, в то время как звуковая волна двигается равномерно в правую сторону.


Pereme.jpg
Рисунок 2. Перемещение звуковой волны


Логично задать вопрос — почему звуковая волна перемещается вправо? Ответ можно найти при внимательном рассмотрении стрелочек на предыдущем рисунке: в месте, где стрелочки сталкиваются с друг другом образуется новое скопление молекул, которое будет находится с правой стороны от первоначальной области компрессии, при удалении от места столкновения стрелочек плотность молекул снижается и образуется новая область разрежения, следовательно постепенное перемещение области высокого и низкого давления приводит к движению звуковой волны в правую сторону.


Pro pereme.jpg
Рисунок 3. Процесс перемещения звуковой волны


Волновое движение такого рода называется гармоническими или синусоидальными колебаниями, которое описывается следующим образом:


x(t) = Asin(wt + φ)


Простая гармоническая или синусоидальная волна изображена на рисунке (Рисунок №4):


Sin.jpg
Рисунок 4. Синусоидальная волна

Длина волны зависит от частоты и скорости звука:


Длина волны (м) = Скорость волны (м/с) / Частота (Гц)


Cоответственно частота определяется следующим образом:


Частота (Гц) = Скорость волны (м/с) / Длина волны (м)


Из этих уравнений видно, что с увеличением частоты — длина волны уменьшается.


Таблица 4. Длина волны в зависимости от частоты звука (при температуре воздуха 20 °С)

Частота, Гц 31,5 63 125 250 500 1000 2000 4000 8000 16000
Длина волны, м 10,9 5,44 2,74 1,37 0,69 0,34 0,17 0,084 0,043 0,021


Интенсивность звука снижается по мере увеличения расстояния от источника звука. Если звуковая волна на своем пути не встречает преград, то звук из источника распространяется во всех направлениях. На рисунке (рисунок №5) изображен характер изменения интенсивности звука — сила звука остается постоянной, но площадь воздействия увеличивается, именно поэтому в отдельно взятой точке интенсивность звука снижается.


Raspos.jpg
Рисунок 5. Процесс распространения звуковой волны

В зависимости от вида источника звука — существует несколько видов звуковых волн: плоские, сферические и цилиндрические.


Vid.jpg
Рисунок 6. Виды источников звука и схематическое изображение фронта волны а — протяженная пластина; б — точечный источник; в — линейный источник.


Плоские волны при распространении не меняют форму и амплитуду, сферические не меняют форму (амплитуда уменьшается как 1/r), цилиндрические меняют и форму, и амплитуду (убывает как 1/r