Физическая природа звука
Звук является спутником человека в течение всей его жизни, но мало кто задумывается, что он собой представляет. С физической точки зрения звук можно определить как колебательные движения частиц в упругой среде, вызванные каким-либо источником, коротко — упругие волны. Скорость звука зависит от свойств среды, в которой он распространяется: в газах скорость звука растет с ростом температуры и давления, в жидкостях при росте температуры наоборот снижается (исключением является вода, в которой скорость звука достигает максимума при 74°С и начинает снижаться только при увеличении данной температуры). Для воздуха такая зависимость выглядит так:
С = 332 + 0,6tc
где tc — температура окружающей среды, °С.
Таблица 1. Скорость звука в газах, при температуре 0 °С и давление 1 атм.
Азот | 334 м/с |
Кислород | 316 м/с |
Воздух | 332 м/с |
Гелий | 965 м/с |
Водород | 1284 м/с |
Метан | 430 м/с |
Аммиак | 415 м/с |
Таблица 2. Скорость звука в жидкостях при температуре 20 °С.
Вода | 1490 м/с |
Бензол | 1324 м/с |
Спирт этиловый | 1180 м/с |
Ртуть | 1453 м/с |
Глицерин | 1923 м/с |
В твердых телах скорость звука определяется модулем упругости вещества и его плотностью, при этом в продольном и поперечном направлении в неограниченных изотропных твердых телах она различается.
Таблица 3. Скорость звука в твердом теле.
Вид твердого тела | Скорость продольной волны, м/с | Скорость поперечной волны, м/с |
---|---|---|
Плавленый кварц | 5970 | 3762 |
Бетон | 4200–5300 | — |
Плексиглас | 2675 | 1110 |
Стекло | 3760–4800 | 2380–2560 |
Тефлон | 1340 | — |
Полистирол | 2350 | 1120 |
Сталь | 5740 | 3092 |
Золото | 3220 | 1200 |
Мрамор | 3810 | — |
Алюминий | 6400 | 3130 |
Полиэтилен | 2000 | — |
Серебро | 3650–3700 | 1600–1690 |
Дуб | 4100 | — |
Сосна | 3600 | — |
Из таблиц наглядно видно, что скорость звука в газах значительно ниже, чем в твердых телах, именно поэтому в приключенческих фильмах часто можно увидеть, как люди прикладывают ухо к земле, чтобы определить наличие погони за собой, также это явление заметно рядом с железной дорогой, когда звук приходящего поезда, слышится дважды — в первый раз он передается по рельсам, а второй — по воздуху.
Процесс колебательного движения звуковой волны в упругой среде, можно описать на примере колебания частицы воздуха:
— на частицу воздуха, вынужденную сдвинуться со своей начальной позиции, из-за воздействия источника звука, действуют упругие силы воздуха, которые пытаются вернуть ее на свое первоначальное место, но из-за действия сил инерции, возвращаясь, частица не останавливается, а начинает удаляться от начальной позиции в противоположную сторону, где в свою очередь на нее также действуют упругие силы и процесс повторяется.
Рисунок 1.Процесс колебания частицы воздуха